Munur á milli breytinga „Innfeldi“

448 bætum bætt við ,  fyrir 15 árum
m
Hellings lagfæring, en betur má ef duga skal.
m
m (Hellings lagfæring, en betur má ef duga skal.)
'''Innfeldi''' er, í [[stærðfræði]] tvílínulegur virki sem er skilgreindur á [[vigurrúm]]um. Hún er stundum einnig kölluð '''punktmargfeldi''' eða '''depilmargfeldi''', og er ýmist táknuð með tveimur oddklofum, <math>\langle a, b\rangle</math>, eða með punkti, <math>a \cdot b</math>. Vigurrúm ásamt innfeldi er kallað [[innfeldisrúm]].
{{hreingerning}}
 
Innfeldi á vigurrúminu '''V''' verður að uppfylla:
Innfeldi einnig kallað punktmargfeldi eða depilmargfeldi er stærðfræðileg aðgerð sem tekur tvo vigra og skilar einni stærð.
 
# <math>\langle a, b \rangle = \langle b, a \rangle</math> (víxlregla)
Innfeldi vigranna '''a''' = [<math>a_1, a_2</math>] og '''b''' = [<math>b_1, b_2</math>] er <math>a_1b_1 + a_2b_2</math>
# <math>\langle a, (b + c) \rangle = \langle a, b \rangle + \langle a, c \rangle</math> (dreifiregla)
 
# <math>r\langle a, b \rangle = \langle ra, b \rangle = \langle a, rb \rangle</math> (tengiregla)
Almennara hafa vigrarnir '''a''' og '''b''', þar sem '''a''' <math> = [a_1, a_2, \cdots ,a_n]</math> og '''b'''<math> = [b_1, b_2, ...,b_n]</math>, innfeldið:
# <math>\langle a, a \rangle \ge 0</math>, og <math>\langle a, a \rangle = 0</math> [[ef og aðeins ef]] <math>a = 0</math> (jákvæðni)
 
 
'''a''' <math>\bullet</math> '''b'''<math> = a_1b_1 + a_2b_2 + \cdots + a_nb_n = \sum^n_{k=1} a_k\cdot b_k</math>
 
== Rauntalnarúm ==
Venjulega innfeldið á <math>\mathbb{R}^n</math> er skilgreint þannig:
:<math>a \cdot b = a_1b_1 + a_2b_2 + \cdots + a_nb_n = \sum^n_{k=1} a_k\cdot b_k</math>, þar sem <math>\bold{a} = (a_1, a_2, \cdots ,a_n)</math> og <math>\bold{b} = (b_1, b_2, ...,b_n)</math>.
 
Einnig má finna innfeldi tveggja vigra með því að margfalda saman lengdir þeirra og cosínus af horninu milli þeirra:
:<math>a \cdot b = \|a\|\|b\|cos(\theta)</math>, þar sem <math>\theta</math> er hornið milli vigranna '''a''' og '''b'''.
 
AlgengtEinnig er algengt að nota innfeldi til að finna horn milli tveggja vigra ef maður þekkir hnit þeirra eru þekkt. Það má gera svona:
'''a'''<math>\bullet</math> '''b''' <math>= |a|\cdot |b| \cdot cos(\theta) </math>
:<math>a \cdot b = \|a\|\|b\|cos(\theta) = a_1b_1 + a_2b_2 + \cdots + a_nb_n \Rightarrow cos(\theta) = {a_1b_1 + a_2b_2 + \cdots + a_nb_n \over \|a\|\|b\|}</math>. Hér táknar <math>\|a\|</math> táknar [[firð|lengd]] vigursins '''a'''.
 
þar sem <math>\theta</math> er hornið milli vigranna '''a''' og '''b'''.
 
 
Algengt er að nota innfeldi til að finna horn milli tveggja vigra ef maður þekkir hnit þeirra. Það má gera svona:
 
'''a'''<math>\bullet</math> '''b''' <math> = |a|\cdot |b| \cdot cos(\theta) = a_1b_1 + a_2b_2 + \cdots + a_nb_n
\Rightarrow cos(\theta) = {a_1b_1 + a_2b_2 + \cdots + a_nb_n \over |a|\cdot|b|}</math>)
 
Mikilvægur eiginleiki innfelda er að innfeldi hornréttra vigra er núll. Það er auðvelt að sjá það því að þátturinn <math>cos(\theta)</math> verður núll þegar <math>\theta = 90^\circ + 180^\circ k</math> þar sem <math>k \in Z</math>
( <math>|a|</math> táknar lengd vigursins '''a'''. Hana má finna með Pýþagorasarreglu: |a| = <math>\sqrt{a_1^2 + a_2^2 + \cdots a_n^2}</math> )
 
{{Línuleg algebra}}
Mikilvægur eiginleiki innfellda er að innfeldi hornréttra vigra er núll.
{{stærðfræðistubbur}}
Það er auðvelt að sjá það því að þátturinn <math>cos(\theta)</math> verður núll þegar <math>\theta = 90^\circ + 180^\circ k</math> þar sem <math>k \in Z</math>
{{stubbur}}
1.802

breytingar